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Abstract
Constraints occur in many application areas of interest to evolutionary computation.
The area considered here is Bayesian networks (BNs), which is a probability-based
method for representing and reasoning with uncertain knowledge. This work deals
with constraints in BNs and investigates how tournament selection can be adapted to
better process such constraints in the context of abductive inference. Abductive infer-
ence in BNs consists of finding the most probable explanation given some evidence.
Since exact abductive inference is NP-hard, several approximate approaches to this
inference task have been developed. One of them applies evolutionary techniques in
order to find optimal or close-to-optimal explanations. A problem with the traditional
evolutionary approach is this: As the number of constraints determined by the ze-
ros in the conditional probability tables grows, performance deteriorates because the
number of explanations whose probability is greater than zero decreases. To minimize
this problem, this paper presents and analyzes a new evolutionary approach to abduc-
tive inference in BNs. By considering abductive inference as a constraint optimization
problem, the novel approach improves performance dramatically when a BN’s condi-
tional probability tables contain a significant number of zeros. Experimental results
are presented comparing the performances of the traditional evolutionary approach
and the approach introduced in this work. The results show that the new approach
significantly outperforms the traditional one.

Keywords
Constraint optimization problem, genetic algorithm, Bayesian network, approximate
abductive inference, most probable explanation.

1 Introduction

Constraint handling by evolutionary algorithms has great importance, since many real-
world problems are constrained. Among such problems are those that can be modeled
by means of Bayesian networks (BNs) (Pearl, 1988; Jensen, 2001; Castillo et al., 1997).
This work focuses on constraints that give rise to the appearance of zero values in the
parametric part of a BN.

BNs (also known as Bayesian belief networks, belief networks, or causal probabilistic
networks) are a type of probabilistic graphical model that became popular in the early
nineties and has ever since been used for representing and reasoning with uncertain
knowledge in a great variety of domains (Heckerman et al., 1995). They have been
successfully applied in fields like estimation of distribution algorithms (Larrañaga and
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Lozano, 2002), medical diagnosis (Heckerman et al., 1992; Heckerman and Nathwani,
1992), fault diagnosis and prediction in industry (Galán et al., 2007), computer vision
(Rimey and Brown, 1994), user modeling (Horvitz et al., 1998), collaborative filtering
(Pennock et al., 2000), and information retrieval (Fung and del Favero, 1995). Abduc-
tive inference and belief updating are the two main inference tasks that can be carried
out in a BN. While belief updating calculates the posterior probability of each unob-
served variable given some evidence (set of observed variables), abductive inference
determines the assignment of values to the unobserved variables (also known as expla-
nation) with maximum posterior probability given some evidence. Although methods
exist that allow exact abductive inference to be performed in relatively complex net-
works, the problem has been proven to be NP-hard (Shimony, 1994). As an example,
in the case of clustering algorithms (Dawid, 1992; Seroussi and Goldmard, 1994; Nils-
son, 1998) applied to highly connected networks, the cliques in the junction tree become
very large, thus making abductive inference slow. For complex networks to which exact
methods cannot be applied, approximate algorithms based on evolutionary computing
(Lin et al., 1990; Rojas-Guzmán and Kramer, 1993, 1996; Gelsema, 1995; Welch, 1996;
Mengshoel and Wilkins, 1998; Zhong and Santos Jr, 2000; de Campos et al., 2002) are
an alternative that allows optimal or close-to-optimal solutions to be reached. As will
be seen in this article, it turns out that great care is needed when using an evolutionary
approach to performing inference in BNs with many zeros.

Extending previous research on constraint handling using tournament selection
(Deb, 2000; Coello and Montes, 2002), this paper presents and analyzes a new approach
to approximate abductive inference in BNs. The underlying idea is to consider this in-
ference task as a constraint optimization problem (COP) such that an explanation is
considered not to meet all of the constraints when its probability is equal to zero. In
this way, the infeasible region is formed by explanations with zero probability. By es-
tablishing the goodness of an explanation from the number of constraints it violates (the
more constraints violated, the worse the explanation is), the feasible region of explana-
tions can be reached in less time than in the case of the traditional approach, where no
constraints are explicitly considered. This leads to computational time savings, since
the search for the optimal solution is efficiently restricted to the feasible region.

In this article, an analytical study is conducted to identify the differences between
the traditional evolutionary approach to abductive inference in BNs and the new ap-
proach. Experimental tests are also reported comparing the performance of both ap-
proaches. The existing evolutionary approximate methods for abductive inference have
the important disadvantage that their performance worsens as the number of zeros
present in the BN conditional probability tables grows. In such cases, both efficiency
and efficacy of the inference process deteriorate as a consequence of the space of ex-
planations being dominated by those whose probability is equal to zero. The new
approach overcomes this problem and leads to dramatic performance improvements
when a significant number of zeros is contained in the conditional probability tables of
a BN.

The rest of this paper is organized as follows. Section 2 reviews BNs and inference
through evolutionary methods in BNs. Section 3 introduces the new evolutionary ap-
proach to approximate abductive inference. Section 4 classifies and analyzes the new
approach within the context of constraint handling by evolutionary algorithms. Sec-
tion 5 presents experimental results obtained for the comparison of the traditional and
the new approaches. Section 6 contains a discussion derived from the present work.
Finally, Section 7 concludes the paper and suggests future research directions.
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2 Preliminaries

Every node in a Bayesian network (BN) (Pearl, 1988; Jensen, 2001; Castillo et al., 1997)
represents a random variable. Nodes are connected by arcs that establish probabilistic
dependence relations between variables. A BN is formed by an acyclic directed graph,
along with a set of conditional probability distributions, usually represented as con-
ditional probability tables (CPTs), one per node. A CPT contains the probability of a
node, given any possible configuration of values for its parents. For root nodes, only
their prior probabilities are needed. Given a BN with nodes V = {V1, . . . , Vn}, the joint
probability over the random variables in the network is expressed as

P (v1, . . . , vn) =
n∏

i=1

P (vi | pa(vi)), (1)

where pa(vi) stands for a configuration of the set of parents for variable Vi. In this
work, only discrete variables are considered. Belief updating amounts to fixing the
values of the observed variables and calculating the posterior probability of each of the
unobserved ones. The present work deals with another important type of inference
process: abductive inference, also known as belief revision.

In the context of abductive inference, given some evidence or set of observations,
e = {E1 = e1, . . . , Em = em} with Ei ∈ {V1, . . . , Vn} ∀i, an explanation is defined as
a configuration of values for the BN variables, v = {V1 = v1, . . . , Vn = vn}, such that
e ⊂ v. Among the set of possible explanations, abductive inference calculates the one
with maximum posterior probability:

v∗ = arg max
v

P (v | e).

Usually, v∗ is referred to as most probable explanation (or MPE). A possible generaliza-
tion of abductive inference can be obtained by considering the k most probable explana-
tions. Without loss of generality, only the most probable explanation will be considered
throughout this paper.

Since abductive inference in BNs has been proven to be an NP-hard problem
(Shimony, 1994), approximate methods were developed that allow optimal or close-
to-optimal solutions to be obtained for complex networks. The reader is referred to
(Gámez, 2004) for a complete review of exact and approximate methods for abductive
inference in BNs. Although approximate abductive inference has been proven to be
NP-hard too (Abdelbar and Hedetniemi, 1998), the set of solvable problems is larger.

This work belongs to the type of approximate methods that use evolutionary com-
puting to perform abductive inference in BNs. The representation of a candidate solu-
tion is frequently used to characterize the different dialects of evolutionary computa-
tion: evolutionary programming, genetic algorithms, evolution strategies, and genetic
programming. This work employs genetic algorithms (GAs) (Holland, 1985; Goldberg,
1989), in which the representation of each candidate solution (or individual) uses a
string whose elements are defined over a finite alphabet. In the context of abductive
inference in BNs, each position (or gene) in the string corresponds to one variable in the
BN. Each gene can take on a number of discrete values (or alleles) which correspond to
the domain values of its associated variable. This simple representation of every expla-
nation as a string is the most widely used for this problem, and the one selected for the
present work.

The usual and simplest way to obtain an initial population in GAs is to initial-
ize each gene independently and uniformly at random. This is the option selected in

Evolutionary Computation Volume x, Number x 3



S. F. Galán and O. J. Mengshoel

this work for illustrative purposes: If no informed method is used to generate the ini-
tial individuals, the benefits of the novel approach can be more accurately evaluated.
Therefore, the value for an unobserved variable is generated uniformly at random,
while each evidence variable is assigned its observed value.

The definition of the fitness of an individual differentiates our approach from the
traditional one. Typically, the fitness of an explanation is computed using Equation 1,
i.e., it results from multiplying a set of factors, each taken from a different CPT after
instantiating the BN variables to the corresponding explanation values. This is justified
by the following result: P (v | e) ∝ P (v, e). Since Druzdzel (1994) demonstrated that
there are theoretical reasons to expect that a small number of complete instantiations
of variables will account for most of the total probability mass, in a network with a
substantial number of zeros in the CPTs, it could be expected that most of the genetic
search would take place in a plateau formed by explanations of probability zero. This
fact represents an important disadvantage for abductive inference to the point that it
could be the case that no valid explanation could be reached in a reasonable time. Sec-
tion 3 explains in detail the way this problem can be avoided by considering abductive
inference in BNs as a constraint optimization problem (COP) and redefining the fitness
function accordingly.

Selection and variation operators can be carried out both in traditional abductive
inference through GAs, in general, and in the novel approach, in particular, by using
the standard methods available in the literature. The reader is referred to (Bäck et al.,
2000a,b) for a complete review of such methods.

The usual methods of handling constraints in evolutionary computation
(Michalewicz and Schoenauer, 1996; Eiben, 2001; Coello, 2002) are based on the fol-
lowing techniques: penalty functions, repair functions, restriction of the search to the
feasible region, and decoder functions.

The penalty function approach involves transforming constraints into optimiza-
tion objectives, so that the constraints disappear and the problem is reduced to optimiz-
ing a modified fitness function. Usually, constraint violations are penalized through a
function that reduces the fitness of individuals in proportion to the number of violated
constraints. If a maximization problem is assumed, the objective function is mapped as
follows given an individual s:

f ′(s) = fobj(s)− fpen(s). (2)

Function fpen(s) is called penalty function and is normally defined as a weighted sum:

fpen(s) =
p∑

i=1

ωi · di(s)k, (3)

where p is the number of constraints, ωi is the weight associated with i-th constraint,
di(s) is a distance metric which measures the cost of repairing a violation of constraint
i, and k is a constant often taking values 1 or 2.

Constraints can also be handled by means of repair functions or restriction of
search. On the one hand, a mechanism can be used that repairs an individual violating
constraints and produces another individual in which all constraints hold. On the other
hand, specific representation, initialization, recombination, and mutation options can
be adopted such that an individual is always guaranteed to meet the constraints.

Finally, an alternative technique for handling constraints is the use of a decoder
function such that genotype is mapped to phenotype in a way that ensures that an in-
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dividual is always mapped to a feasible solution. Different genotypes may be mapped
onto the same phenotype by following this technique.

While different constraint handling techniques have been discussed in the litera-
ture, the remainder of this paper focuses on a hybrid approach that combines feasibility
considerations with the use of penalty functions: constraint handling using tournament
selection (Deb, 2000; Coello and Montes, 2002; Jiménez and Verdegay, 1999).

3 Constraints in Bayesian Networks

Abductive inference in BNs can be considered as a COP formed by tuple 〈V, D, C, fobj〉.
Given a network, the elements of the tuple can be defined as follows:

• V = {V1, . . . , Vn} is the set of n random variables in the BN.

• {D1, . . . , Dn} is the set of domains for the variables such that Vi is defined over
Di. A COP is defined in terms of variables V taking values within search space
D = {D1 × . . . × Dn}. A complete assignment of values to variables, denoted as
Θ, is called valuation. Θ is a vector in D such that a value from Di is assigned to
each variable Vi, ∀i ∈ {1, . . . , n}. In this work, the set of mutually exclusive and
exhaustive values within Di are assumed to be discrete. Given some evidence e =
{E1 = e1, . . . , Em = em}with m < n and Ei ∈ V ∀i, only valuations with variables
{E1, . . . , Em} instantiated to their corresponding values in e will be considered.

• C = {C1, . . . , Cn} is a set of n constraints, where Ci : D → {true, false} are predi-
cates over one or more variables in V , denoted as Ci(V ). A valuation Θ for which
constraints hold, i.e., C(Θ) = true, is called a solution. Each variable Vi, with
i ∈ {1, . . . , n}, defines constraint Ci for any valuation (or explanation in BN ter-
minology) {v1, . . . , vi, . . . , vn} as follows:

Ci({v1, . . . , vi, . . . , vn}) =
{

false if P (vi | pa(vi)) = 0
true otherwise

where pa(vi) represents a configuration of the set of parents for variable Vi in ex-
planation {v1, . . . , vi, . . . , vn}. Note that P (vi | pa(vi)) can be obtained from the
CPTs in the network. In other words, each variable Vi defines a constraint which is
violated by explanation {v1, . . . , vi, . . . , vn} when entry (vi, pa(vi)) is equal to 0 in
the CPT associated with Vi.

• fobj : D → (0, 1] is the objective function assigning a numerical quality value to
a solution. It is defined from Equation 1 for every explanation {v1, . . . , vi, . . . , vn}
satisfying all of the constraints.

The goal is to find an optimal solution, i.e., a valuation such that the constraints are
satisfied and the objective function is maximized.

3.1 The New Approach

The main part of the new evolutionary approach to abductive inference in BNs is its
formalization of the fitness function. In order to introduce this formalization, two defi-
nitions are necessary:

Definition 1 Given a BN and an explanation v = {v1, . . . , vn}, z(v) stands for the number
of constraints violated by v.
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Definition 2 Given a BN and an explanation v = {v1, . . . , vn}, f(v) denotes the result
obtained by applying Equation 1 to v after first discarding all factors equal to 0; therefore,
0 < f(v) ≤ 1 ∀v. Function f(v) will be called “positive fitness”, since it is the traditional
fitness restricted to include only positive conditional probabilities of an explanation.

The novel fitness function is constructed by taking into account both the number of
constraints violated by an explanation and its positive fitness.

Definition 3 The dual fitness of an explanation v is a pair 〈z(v), f(v)〉, following the previous
definitions for z(v) and f(v).

Definition 4 An explanation v is feasible if P (v) > 0, whereas it is infeasible if P (v) = 0.

The conditions under which an explanation is fitter than another are established in the
following way (see (Deb, 2000) for a similar criterion):

Definition 5 Given two explanations v1 and v2, the following cases can be considered in order
to establish which explanation is fitter (and therefore the winner):

(i) If v1 and v2 are both feasible, i.e., they are solutions in which all of the constraints hold,

winner := arg max
v∈{v1,v2}

f(v).

(ii) If one of v1 and v2 is feasible while the other is infeasible, the winner is the feasible one.

(iii) If v1 and v2 are both infeasible such that z(v1) 6= z(v2),

winner := arg min
v∈{v1,v2}

z(v).

(iv) If v1 and v2 are both infeasible such that z(v1) = z(v2),

winner := arg max
v∈{v1,v2}

f(v).

An explanation v1 being fitter than another one v2 will be denoted as v1 Â v2. If there is a tie
after cases (i)-(iv) have been applied, then a winner is picked uniformly at random.

Definition 3 gives rise to a type of fitness function that can be used with selection
methods in which only an ordering by quality needs to be established for individuals.
This is the case for tournament selection or ranking selection. However, selection meth-
ods based on assigning a numerical value to each individual’s fitness, like in fitness
proportional selection, are not applicable when using this new approach.

Since the fitness function in Definition 3 has two parts, z(v) and f(v), such that
z(v) should be minimized and f(v) should be maximized, the new approach involves
the use of a dual-objective fitness function 〈z(v), f(v)〉. However, in terms of selection
a single-objective GA is being used and not a multi-objective GA (Deb, 2001; Coello
et al., 2002), since an ordering by quality is always possible for any pair of individuals
in the new approach. The following example illustrates this point.

Example 1 Let v1 and v2 be two explanations for a BN, with fitness values
〈z(v1) = 3, f(v1) = 0.9〉 and 〈z(v2) = 1, f(v2) = 0.7〉, respectively. Since z(v1) > z(v2)
and f(v1) > f(v2), v1 does not dominate v2 and v2 does not dominate v1. However, un-
der the approach introduced in this paper, we conclude using Definition 5 that v2 Â v1, since
z(v2) < z(v1).
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Figure 1: A BN with four nodes.

As will be shown in Section 5, an evolutionary algorithm based on a fitness func-
tion as established in Definition 3 and selection operating under Definition 5, often
allows explanations satisfying all of the constraints to be more efficiently reached than
in the case of an evolutionary algorithm where constraints are not incorporated into
the fitness function. In this latter case, if the CPTs contain enough zeros, much of the
genetic search would take place in a plateau formed by infeasible explanations. For net-
works whose CPTs contain no zeros, the novel fitness function and the traditional one
become equivalent, since every explanation v will satisfy the constraints: ∀v z(v) = 0.

Stochastic local search algorithms using similar ideas, such as GSAT and WalkSAT
(Selman and Kautz, 1993; Hoos and Stützle, 2005), have been investigated for the sat-
isfiability problem. These and similar algorithms minimize the number of unsatisfied
clauses in propositional formulas. This corresponds to our minimization of the number
of violated clauses z(v). What is different in our formulation here is that we decompose
fitness into two parts z(v) and f(v), and declare a winner as presented in Definition 5.
Algorithms for satisfiability, including GSAT and WalkSAT, do not need to consider
f(v) since this part deals with probabilities, which is beyond the scope of propositional
logic.

3.2 An Example

Consider the network depicted in Figure 1, formed by four binary variables whose
domain is {0, 1}. The CPTs are defined by the following probabilities:

P (A = 0) = 0

P (B = 0 | A = 0, C = 0) = 0.4
P (B = 0 | A = 0, C = 1) = 0.7
P (B = 0 | A = 1, C = 0) = 0

P (B = 0 | A = 1, C = 1) = 0.6

P (C = 0) = 0.25

P (D = 0 | C = 0) = 0
P (D = 0 | C = 1) = 0.1.

Suppose that there is no evidence. The following probabilities are involved for expla-
nation v1 = (A = 0, B = 1, C = 0, D = 0):

P (A = 0) = 0
P (B = 1 | A = 0, C = 0) = 0.6

P (C = 0) = 0.25
P (D = 0 | C = 0) = 0.
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Consequently, the traditional approach would assign to v1 the fitness value: 0·0.6·0.25·
0 = 0. However, the approach presented in this paper gives v1 the following values:

〈z(v1) = 2, f(v1) = 0.6 · 0.25 = 0.15〉 .

Given a different explanation v2 = (A = 1, B = 1, C = 0, D = 0),

P (A = 1) = 1
P (B = 1 | A = 1, C = 0) = 1

P (C = 0) = 0.25
P (D = 0 | C = 0) = 0.

The fitness of v2 in the traditional approach would be equal to: 1 · 1 · 0.25 · 0 = 0. The
new approach would give v2 the values:

〈z(v2) = 1, f(v2) = 1 · 1 · 0.25 = 0.25〉 .

Note that while both explanations have the same fitness under the traditional approach,
v2 is fitter than v1 under the new approach.

3.3 Control of Constraints in Bayesian Networks

The number of zeros present in the randomly-generated CPTs of a BN can be controlled
through the following algorithm.

Algorithm 1 Generation of random CPTs for a BN such that the number of zeros included in
its CPTs can be controlled:

Input:
A BN
ρ parameter controlling the number of zeros in the CPTs: ρ ∈ [0, 1]

Output:
A BN with random CPTs and controlled number of zeros in them

1. For each variable V in the network:

(a) If V has parents, for each possible configuration of V ’s parents, pa(v), generate the
CPT entries, P (vi | pa(v)) ∀i ∈ {1, . . . , |V |}, in the following way:

i. For i = 1 to |V |:
if i < |V |

if rnd(0, 1) < ρ
P (vi | pa(v)) = 0

else

P (vi | pa(v)) = rnd

(
0, 1−

i−1∑
j=1

P (vj | pa(v))

)

else

P (vi | pa(v)) = 1−
|V |−1∑
j=1

P (vj | pa(v))

(b) If V has no parents, generate the CPT entries, P (vi) ∀i ∈ {1, . . . , |V |}, by substitut-
ing in step 1.(a).i P (vi | pa(v)) and P (vj | pa(v)) by P (vi) and P (vj), respectively.
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where
|V | is the domain size of variable V ,
vi is the i-th value of the domain for variable V , and
rnd(r1, r2) is a random number between r1 and r2.

This algorithm is used in the present work to generate partly deterministic CPTs
in BNs (see (Mengshoel et al., 2006) for a study of algorithms for generating random
BNs of varying difficulty levels). The degree of determinism or, in other words, the
expected percentage of zeros in CPTs, is controlled by means of the input parameter
ρ. The greater the value of ρ, the larger the number of CPT entries are, on average,
set to zero. There is a difference between Algorithm 1 and related research in that
Algorithm 1 only sets a BN’s CPT entries, while other algorithms also create (given
certain constraints) the structure of the BN (Mengshoel et al., 2006).

From the point of view of constraint handling in GAs, the advantage of this algo-
rithm is that it allows us to systematically control the size of the feasible region versus
the infeasible region by changing the value of just one parameter ρ. As ρ increases,
the size of the infeasible region increases (and, therefore, the size of the feasible region
decreases).

Theorem 1 For BNs whose parameters are generated by Algorithm 1, let v be a random state
of node V . The probability P0,V that P (v | pa(v)) = 0 is |V |−1

|V | · ρ, where |V | is the domain
size for V .

Proof. In Algorithm 1, values vi (i ∈ {1, . . . , |V | − 1}) are assigned P (vi | pa(v)) = 0
with probability equal to ρ. Value v|V | corresponds to last state for variable V , which
is always used for CPT normalization and, consequently, assigned a conditional prob-
ability P (v|V | | pa(v)) > 0. Therefore, a correction factor |V |−1

|V | has to be applied to ρ in
P0,V .

One needs to be careful when discussing what makes BNs hard or easy; several
issues are intertwined. There is the issue of the number of solutions. There is also the
issue of BN structure (or topology), which again has impact on treewidth (or optimal
maximal clique size in a clique tree) (Mengshoel et al., 2006). There are also the issues
of evidence and the values of conditional probabilities. A comprehensive discussion of
what makes BNs hard or easy is beyond the scope of this paper. Our main focus in this
article is on determinism, and in particular how determinism is handled in different
variants of tournament selection.

4 Constraint Handling Using Tournament Selection

The novel approach to abductive inference in BNs takes ideas from the penalty-function
technique in order to handle constraints. By substituting ωi = 1 ∀i, k = 1, and

di(s) =
{

1 if constraint i is violated
0 if constraint i is held

in Equation 3, a penalty function fpen(v) = z(v) is created that measures the num-
ber of constraints violated by explanation v. However, instead of adding the penalty
function to the objective function as in Equation 2, the penalty component z(v) is ex-
plicitly stored together with the positive fitness f(v). Subsequently, z(v) and f(v) can
be used in turn —first z(v) and then f(v)— to select a winning explanation in tourna-
ment selection or to rank explanations in ranking selection. Therefore, a hybrid method
is developed that combines:
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(i) consideration of feasible (P (vfeasible) > 0) and infeasible (P (vinfeasible) = 0) expla-
nations, and

(ii) a penalty function z(v) which is only used when both explanations are infeasible.

The approach introduced in this work has some similarities with methods that
use a penalty-function approach but do not require any penalty parameter ωi. Such
methods (Deb, 2000; Jiménez and Verdegay, 1999) use tournament selection based on
the following rules:

(i) When two feasible individuals are compared, the one with better objective function
value is chosen.

(ii) When one feasible individual is compared with an infeasible one, the feasible in-
dividual is chosen.

(iii) When two infeasible individuals are compared, the one with smaller constraint
violation is chosen.

Another method that uses tournament selection in the context of constraint opti-
mization problems can be found in (Coello and Montes, 2002). The underlying idea is
to use concepts from multi-objective optimization to derive constraint-handling tech-
niques. This method redefines the single-objective optimization function fobj as a
multi-objective optimization problem with p + 1 objectives, where p is the number of
constraints; then any multi-objective optimization technique can be applied to the vec-
tor (fobj , f1, . . . , fp), where {f1, . . . , fp} are the original constraints of the problem. A
set of rules based on dominance relations between individuals and feasibility of indi-
viduals are applied in order to carry out the selection process.

The approach proposed in the present work is more similar to that of Deb (2000)
(see also (Deb, 2001, Sections 7.5 and 4.2.3), where the method is called “constrained
tournament method”), who uses single-objective tournament selection, than to that of
Coello and Montes (2002), who use multi-objective tournament selection.

4.1 The Algorithm

The following simple genetic algorithm can be used to compare the traditional and the
novel approaches to abductive inference in BNs.

Algorithm 2 Simple genetic algorithm for abductive inference in BNs:

Input:
FitnessFunction: type of fitness used (TraditionalFitness or NovelFitness)
m population size
n number of nodes in the BN
g number of generations
pc crossover rate
pm mutation rate

Output:
v̂∗ An estimate of the MPE

1. Initialize the population with random candidate explanations.
For i = 1 to m:

For j = 1 to n:
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Assign to explanation vi a value for variable Vj chosen uniformly at random from
Vj ’s domain.

2. Do g times:

(a) Select parents.
For i = 1 to m:

Parent i is selected by tournament with tournament size equal to 2 and without
replacement. Choose as winner the explanation with greatest joint probability, in
the case of TraditionalFitness, or the fitter explanation from Definition 5, in the
case of NovelFitness:

Parenti := Tournament(v1,v2, FitnessFunction),

where v1 and v2 are two explanations selected uniformly at random from the
current population.

(b) Recombine parents by single-point crossover with a given crossover rate pc.

(c) Mutate offspring with a given mutation rate pm for each gene or variable. Each new
allele is selected uniformly at random among the rest of values for the corresponding
variable.

3. Obtain from the final population: v̂∗ = arg max
v

P (v).

Algorithm 2 generates the initial population in a random way. Parent selection
is performed by means of tournament selection. Single-point crossover is chosen as
recombination operator. Mutation is carried out such that a new allele is chosen uni-
formly at random from the set of permissible ones. Finally, survivor selection is imple-
mented as a generational model.

4.2 Analysis

Without loss of generality, in this section it will be assumed that no evidence is present.

Definition 6 Let z(t) be a random variable denoting the number of constraints violated by an
individual at generation t. Then P (z(t) = i) is the probability that an individual at generation
t violates i constraints.

The first step in Algorithm 2 implements random initialization of the population.
The relative distribution of feasible versus infeasible individuals in the initial popu-
lation is important for the comparative performance between the traditional and the
novel approaches.

Theorem 2 Consider an arbitrary individual in the initial population for a BN generated by
Algorithm 1. The probability that this individual is feasible is:

P (z(1) = 0) =
n∏

i=1

(
1− |Vi| − 1

|Vi| · ρ
)

.

Proof. Random generation of an individual consists of n random allele choices. A
random allele choice for i-th gene gives rise to the random selection of a conditional
probability from the CPT associated with the corresponding variable Vi. Let P0,i denote
the probability that P (vi | pa(vi)) = 0. As n independent allele choices have to be made,
the probability that n conditional probabilities greater than 0 are obtained in order to
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generate a feasible individual is equal to
∏n

i=1(1 − P0,i). The theorem is immediate
by taking into account that, from Theorem 1, P0,i = |Vi|−1

|Vi| · ρ for BNs generated by
Algorithm 1.

Consider large BNs with a great number of zeros in their CPTs. Once the initial
population has been created, it is very likely that every individual violates at least one
constraint. In the case of the traditional approach, this means that every individual in
the initial population has fitness equal to zero and, consequently, a random walk would
take place. Such random walk is avoided in the case of the novel approach, since dif-
ferent fitnesses would be assigned to the initial individuals. The mean number of gen-
erations that random walk would take for a given BN under the traditional approach is
given by the following theorem. This random walk is approximated with random and
independent generation of populations.

Theorem 3 The mean generation at which one or more feasible individuals is generated is

tfirst = 1

/(
1−

{
1−

n∏

i=1

(
1− |Vi| − 1

|Vi| · ρ
)}m)

.

Proof. From Theorem 2, the probability of a randomly generated individual being
infeasible is

P (z(1) > 0) = 1−
n∏

i=1

(
1− |Vi| − 1

|Vi| · ρ
)

. (4)

Define a successful outcome, with probability psuccess, to be one in which there is one or
more feasible individuals in the population. Define a failed outcome, with probability
pfailure, to be one in which all m individuals in the population are infeasible. Clearly,
psuccess + pfailure = 1 and thus

psuccess = 1− pfailure

= 1− P (z(1) > 0)m. (5)

By substituting (4) into (5 ), the following is obtained:

psuccess = 1−
{

1−
n∏

i=1

(
1− |Vi| − 1

|Vi| · ρ
)}m

.

Assuming that populations are generated independently at random, the number of
populations generated before success is a geometric random variable with probability
psuccess and mean tfirst = 1/psuccess, giving the desired result.

It should be noted that random walk can have a damaging effect on the traditional
approach’s performance. As an example, for m = 100, P0,i = |Vi|−1

|Vi| · ρ = 0.2 ∀i ∈
{1, . . . , n}, and n = 50, the random walk is expected to take place for 700 generations.

Once the random walk is over under the traditional approach, one individual ap-
pears which is fitter than the rest. If just selection were considered, this individual
would take over the whole population after a number of generations. In the novel
approach, the takeover process could be considered to begin in the first generation. Re-
sults estimating takeover times for different selection schemes can be found in (Gold-
berg and Deb, 1991, Section 5) and (Thierens and Goldberg, 1994, Section 3). Theorem
4 constitutes a particularization for the problem considered in this work of the results
obtained by Goldberg and Deb (1991) for a takeover process under tournament selec-
tion.
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Theorem 4 For a simple genetic algorithm based on Algorithm 2, if just tournament selection
is considered (recombination and mutation are not applied):

P (z(t) > 0) =

(
1−

n∏

i=1

(1− P0,i)

)γt−1

,

where t specifies the current generation, t = 1 for the initial population, γ is the tournament
size, and P0,i is the probability that a conditional probability equal to 0 is randomly selected
from the CPT associated with i-th node in the BN.

Proof. The theorem will be proven by induction. It is immediate that P (z(1) > 0) = 1−
P (z(1) = 0) = 1−∏n

i=1(1−P0,i), which proves the theorem for t = 1. Assuming that the
theorem is true for generation t, an infeasible individual will be selected for generation
t+1 if γ infeasible individuals from generation t are chosen for a tournament. Therefore,

P (z(t + 1) > 0) =

(
1−

n∏

i=1

(1− P0,i)

)γt−1

· γ. . . ·
(

1−
n∏

i=1

(1− P0,i)

)γt−1

=

(
1−

n∏

i=1

(1− P0,i)

)γt

,

which proves the theorem for generation t + 1.
Theorem 4 can be applied to both the traditional and the novel approaches.

Therefore, this theorem does not show how different the latter works from the for-
mer. Instead of studying P (z(t) > 0), Theorem 5 and Theorem 6 allow P (z(t) = i)
∀i ∈ {1, . . . , n} to be calculated for the traditional and the novel approaches, respec-
tively. Thus, a comparative study between the two approaches will be possible.

Theorem 5 (Constraints violated, traditional approach) For a simple genetic algorithm
based on Algorithm 2, if just tournament selection is considered under the traditional approach
(recombination and mutation are not applied):

P (z(t) = i) = {1− P (z(1) = 0)}γt−1−1 · P (z(1) = i) ∀i ∈ {1, . . . , n},

where t specifies the current generation, t = 1 for the initial population, and γ is the tournament
size.

Proof. A proof by induction will be given. It is immediate that the theorem holds for t =
1. An individual violating i constraints (i ∈ {1, . . . , n}) will be selected for generation
t+1 if it is randomly selected from those of generation t chosen for a tournament, given
that no feasible individual is chosen for the same tournament. Since the probability that
no feasible individual is chosen at t+1 for a tournament is equal to {1− P (z(t) = 0)}γ ,

P (z(t + 1) = i) = {1− P (z(t) = 0)}γ · P (z(t) = i)
n∑

j=1

P (z(t) = j)

=




n∑

j=1

P (z(t) = j)




γ−1

· P (z(t) = i).
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Assuming that the theorem is true for generation t:

P (z(t + 1) = i) =


{1− P (z(1) = 0)}γt−1−1 ·

n∑

j=1

P (z(1) = j)




γ−1

· P (z(t) = i)

=
(
{1− P (z(1) = 0)}γt−1

)γ−1

· P (z(t) = i).

Applying again the inductive hypothesis for generation t:

P (z(t + 1) = i) = {1− P (z(1) = 0)}γt−1·(γ−1)+γt−1−1 · P (z(1) = i)

= {1− P (z(1) = 0)}γt−1 · P (z(1) = i) ∀i ∈ {1, . . . , n},
which proves the theorem for generation t + 1.

Theorem 5 constitutes a generalization of the results obtained by Goldberg and
Deb (1991) for the proportion of best-fitness individuals in a population subjected to
tournament selection. Here, instead of two categories (optimal vs. non-optimal indi-
viduals), n + 1 categories are considered (one category for the feasible individuals and
n categories for individuals violating i constraints, with i ∈ {1, . . . , n}). An individual
from the category of feasible individuals wins over any other infeasible individual from
an inferior category. For two infeasible individuals from different categories, under the
traditional approach the winner is selected in a random way.

Theorem 6 (Constraints violated, novel approach) For a simple genetic algorithm based
on Algorithm 2, if just tournament selection is considered under the novel approach (recombi-
nation and mutation are not applied):

P (z(t) = i) =




n∑

j=i

P (z(1) = j)




γt−1

−



n∑

j=i+1

P (z(1) = j)




γt−1

∀i ∈ {1, . . . , n},

where t specifies the current generation, t = 1 for the initial population, and γ is the tournament
size.

Proof. The theorem will be proven by induction. It is immediate that the theorem is
true for t = 1. An individual violating i constraints (i ∈ {1, . . . , n}) will be selected for
generation t + 1 if it is chosen from generation t for a tournament and no individual
violating fewer than i constraints is chosen for the same tournament. Equivalently,
P (z(t + 1) = i) can be calculated by subtracting the probability that an individual
violating more than i constraints is selected for generation t + 1 from the probability
that γ individuals violating i or more than i constraints are selected from generation t
for a tournament:

P (z(t + 1) = i) = P (z(t) ≥ i)γ − P (z(t + 1) ≥ i + 1) (6)

=




n∑

j=i

P (z(t) = j)




γ

−



n∑

j=i+1

P (z(t + 1) = j)


 . (7)

From Equation 7 for i = n:

P (z(t + 1) = n) = P (z(t) = n)γ ,
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which combined with Equation 7 for i = n− 1 yields:

P (z(t + 1) = n− 1) =




n∑

j=n−1

P (z(t) = j)




γ

− P (z(t) = n)γ .

In general,

P (z(t + 1) = i) =




n∑

j=i

P (z(t) = j)




γ

−



n∑

j=i+1

P (z(t) = j)




γ

∀i ∈ {1, . . . , n}. (8)

Applying the inductive hypothesis for generation t in Equation 8:

P (z(t + 1) = i) =








n∑

j=i

P (z(1) = j)




γt−1


γ

−








n∑

j=i+1

P (z(1) = j)




γt−1


γ

=




n∑

j=i

P (z(1) = j)




γt

−



n∑

j=i+1

P (z(1) = j)




γt

∀i ∈ {1, . . . , n},

which proves the theorem for generation t + 1.
Similar to Theorem 5, Theorem 6 generalizes the work by Goldberg and Deb (1991).

However, for two infeasible individuals from different categories (with different num-
ber of constraints violated), in the case of the novel approach the winner is selected
based on the new fitness function introduced in Definition 3.

4.3 An Example

In order to compare the formula in Theorem 5 with the formula in Theorem 6, let the
parameters involved be instantiated as follows: n = 25, γ = 2, and

P (z(1) = i) =
(

n

i

)
·
(

1− w − 1
w

· ρ
)n−i

·
(

w − 1
w

· ρ
)i

∀i ∈ {1, . . . , n}, (9)

where w is the mean domain size for the BN variables and is assigned value 2, and
ρ = 0.3. Equation 9 corresponds to population initialization carried out uniformly
at random. In this equation, the second factor multiplied by the third factor is the
probability that an individual violating only i given constraints is created. Figure 2
depicts the graphs for P (z(t) = i) (i ∈ {1, . . . , 8}) under the traditional and the novel
approaches.

The graphs for the traditional approach show an exponential decay pattern for
P (z(t) = i) ∀i ∈ {1, . . . , 8}. As far as the graphs for the novel approach are concerned,
while a rapid exponential-decay pattern is observed for high i values (more rapid than
in the case of the traditional approach), for low i values P (z(t) = i) first grows to
reach a maximum (the lower i, the higher the maximum) and then decreases to zero.
Consequently, two main conclusions can be obtained from Figure 2:

(i) The novel approach eliminates individuals with a high number of violated con-
straints more rapidly than the traditional approach does.
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Figure 2: P (z(t) = i) under the novel (thick lines, index i) and the traditional (thin
lines, index j) approaches.

(ii) Under the novel approach, individuals with few violated constraints rapidly take
over the population.

Recombination and mutation make the performance of an evolutionary algorithm
differ from a simple takeover process guided by selection only. The next section aims
at empirically comparing the performances of two genetic algorithms which include
recombination and mutation working under the traditional and the novel approaches,
respectively.

5 Experiments

In order to compare the performance of the traditional approach with that of the novel
approach, abductive inference was carried out on a set of BNs using both approaches.
Without loss of generality, MPE computation with no evidence was performed.

The BNs used in the experiments were generated in two phases:

• Firstly, a number of BNs were selected from the literature devoted to abductive in-
ference in BNs using evolutionary methods. The graphs and the domains of vari-
ables were maintained in the selected BNs. Table 1 shows the main characteristics
of the four networks1 finally selected.

• Secondly, random CPTs were generated for each of the four selected networks by
applying Algorithm 1. BNs with random CPTs were generated independently of

1Some BN repositories where Alarm network (Beinlich et al., 1989) can be obtained are:
http://genie.sis.pitt.edu/networks.html
http://www.cs.huji.ac.il/labs/compbio/Repository/
http://www.cs.aux.dk/research/DSS/Misc/networks.html

16 Evolutionary Computation Volume x, Number x



Handling constraints in Bayesian networks using tournament selection

BN Name No. of Nodes Search Space Size Taken from
Gelsema Binary: 15 3.2768E+4 (Gelsema, 1995)

Rojas
Binary: 15
Ternary: 5

7.962624E+6 (Rojas-Guzmán and Kramer, 1996)

Welch Binary: 32 4.294967295E+9 (Welch, 1996)

Alarm
Binary: 13
Ternary: 17

Quaternary: 7
1.7332899271409664E+16 (de Campos et al., 2002)

Table 1: Main characteristics of the four BNs selected from the literature. These net-
works are the basis for the 32 networks used in experiments.

each other for the four networks in Table 1 and for ρ ∈ {0.1, 0.2, . . . , 0.8}2, giving a
total of 32 BNs used for experimentation.

The simple genetic algorithm described in Section 4.1 was used in the experiments
with pc = 1 and pm = 1

n , where n is the number of nodes in the BN. Survivor selection
was implemented as a generational model with elitism for the best individual.

Two types of experiments were conducted. In the first type, the results for both ap-
proaches after a fixed number of generations were compared. The second type studied
population evolution generation by generation.

5.1 Results After a Fixed Number of Generations

Applying both the traditional and the novel approaches, the genetic algorithm was run
one hundred times on each of 32 BNs generated randomly from the Gelsema, Rojas,
Welch, and Alarm networks. Each run for a given BN with random CPTs was executed
for g = 50 generations with the following population sizes: m = 10 for Gelsema net-
works, m = 100 for Rojas networks, m = 150 for Welch networks, and m = 1000 for
Alarm networks. Different seeds for the random number generator were used for each
run and each approach.

Tables 2-5 show the sample means of the best fitnesses reached in one hundred
runs performed under both approaches for each of the randomly generated BNs. The
percentage of runs reaching optimum in each BN experiment, alternatively known as
accuracy, is also included in the tables.

Paired t-tests were performed on the best-fitness data contained in Tables 2-5 to
determine whether the null hypothesis is consistent with the data, i.e., whether the re-
sults obtained for the traditional approach and those obtained for the novel approach
come from the same distribution and, therefore, the differences are due to random ef-
fects. The results for paired t-tests, on pairs constituted by mean best fitness values
under both approaches, are included in Table 6. Besides t value, probability P of the
corresponding result assuming the null hypothesis is shown. The values for P in Table
6 can be considered as significant enough to discard the null hypothesis for the data
obtained for ρ ∈ {0.1, 0.2, . . . , 0.8}, suggesting that the novel approach is better than
the traditional approach.

2Value ρ = 0 was omitted because it represents the case in which, a priori, no zeros are introduced in the
randomly generated CPTs and, as a consequence, both approaches perform the same. Values ρ = 0.9 and
ρ = 1 were not considered because they constitute extreme cases, rarely appearing in real-world BNs.
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Best fitness Accuracy (%)
ρ Traditional Novel Traditional Novel

0.1 0.08574 0.08197 75 71
0.2 0.01159 0.01182 62 71
0.3 0.06665 0.07645 62 74
0.4 0.02005 0.02426 40 61
0.5 0.05881 0.08895 50 87
0.6 0.02577 0.16508 10 82
0.7 0.05044 0.27632 11 83
0.8 0.02756 0.36629 6 100

Table 2: Experimental results after a fixed number of generations for eight Gelsema
networks over 100 runs.

Best fitness Accuracy (%)
ρ Traditional Novel Traditional Novel

0.1 0.0021 0.00221 51 62
0.2 0.00186 0.00183 50 46
0.3 0.00106 0.00121 32 52
0.4 0.00989 0.05924 5 79
0.5 0.00583 0.02358 2 48
0.6 0.00906 0.11132 3 99
0.7 0.00142 0.21164 0 99
0.8 4.43639E-4 0.0982 0 97

Table 3: Experimental results after a fixed number of generations for eight Rojas net-
works over 100 runs.

Best fitness Accuracy (%)
ρ Traditional Novel Traditional Novel

0.1 6.79454E-5 7.09712E-5 23 35
0.2 0.00152 0.00197 14 17
0.3 1.64007E-4 2.52125E-4 9 22
0.4 5.21534E-5 0.00427 0 15
0.5 1.0677E-5 0.00505 0 87
0.6 4.25574E-6 0.01275 0 33
0.7 0 0.04162 0 47
0.8 0 0.07485 0 92

Table 4: Experimental results after a fixed number of generations for eight Welch net-
works over 100 runs.
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Best fitness Accuracy (%)
ρ Traditional Novel Traditional Novel

0.1 1.03055E-7 2.08097E-7 0 0
0.2 1.44638E-10 8.67431E-8 0 0
0.3 1.29603E-11 5.89381E-7 0 0
0.4 2.06003E-15 7.9208E-6 0 0
0.5 2.82928E-12 1.06317E-5 0 0
0.6 5.20155E-20 1.25066E-4 0 0
0.7 0 2.16682E-4 0 0
0.8 0 0.01654 0 46

Table 5: Experimental results after a fixed number of generations for eight Alarm net-
works over 100 runs.

Networks t (mean best fitness) P (mean best fitness)
Gelsema 2.04 0.081

Rojas 2.28 0.057
Welch 1.82 0.112
Alarm 1.02 0.34

Table 6: Paired t-test results for the experiments measuring best fitness after a fixed
number of generations under the traditional and the novel approaches.

5.2 Results Obtained Generation by Generation

Both approaches were executed one hundred times on the same type of networks de-
scribed for the previous tests and using the same population sizes. However, g = 1000
generations were now studied by measuring the following two magnitudes generation
by generation:

• Best fitness: For the best individual at generation t under each approach, its joint
probability is reported, P (vbest(t)).

• Estimate of P (z(t) > 0): P (z(t) > 0), defined in Section 4.2, is estimated by dividing
the number of infeasible individuals at t by m. The analysis of the evolution of
this estimate allows one to study the ability of the two approaches to find feasible
solutions.

Figures 3-6 show the mean best fitness for the Gelsema, Rojas, Welch, and Alarm net-
works, respectively, for one hundred runs. Logarithmic scale was used to facilitate
viewing the parts of the graphs with more variability. Figures 7-10 depict the mean
P (z(t) > 0) for the Gelsema, Rojas, Welch, and Alarm networks, respectively.

6 Discussion

6.1 Performance After a Fixed Number of Generations

Results in Section 5.1 for a fixed number of generations show that the performance of
the traditional approach deteriorates compared to the novel approach as ρ grows from
0.1 to 0.8. In general, while the performance of the traditional approach worsens as
ρ grows, that of the novel approach improves. Mean best fitness and mean accuracy
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Figure 3: Best fitness results for eight Gelsema networks and ρ ∈ {0.1, . . . , 0.8} under
the traditional (tra) and the novel (nov) approaches.
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Figure 4: Best fitness results for eight Rojas networks and ρ ∈ {0.1, . . . , 0.8} under the
traditional (tra) and the novel (nov) approaches.
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Figure 5: Best fitness results for eight Welch networks and ρ ∈ {0.1, . . . , 0.8} under the
traditional (tra) and the novel (nov) approaches.
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Figure 6: Best fitness results for eight Alarm networks and ρ ∈ {0.1, . . . , 0.8} under the
traditional (tra) and the novel (nov) approaches.
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Figure 7: P (z(t) > 0) results for eight Gelsema networks and ρ ∈ {0.1, . . . , 0.8} under
the traditional (tra) and the novel (nov) approaches.
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Figure 8: P (z(t) > 0) results for eight Rojas networks and ρ ∈ {0.1, . . . , 0.8} under the
traditional (tra) and the novel (nov) approaches.
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Figure 9: P (z(t) > 0) results for eight Welch networks and ρ ∈ {0.1, . . . , 0.8} under the
traditional (tra) and the novel (nov) approaches.
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Figure 10: P (z(t) > 0) results for eight Alarm networks and ρ ∈ {0.1, . . . , 0.8} under
the traditional (tra) and the novel (nov) approaches.
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in Tables 2-5 are similar under both approaches for low ρ values; however, the differ-
ences both in best fitness and in accuracy for the two approaches are increasingly larger
with ρ. The first piece of data in Tables 2-5 reporting outperformance by the novel ap-
proach can be observed between ρ = 0.1 and ρ = 0.3, depending on the particular
type of network. It should be noted that even if the accuracy column in Table 5 for
Alarm networks does not report significant differences (except for ρ = 0.8), the best fit-
ness column in this table clearly demonstrates that these differences exist and that they
are significant. In fact, performance differences between these approaches seem to get
more pronounced as BNs with larger domain sizes are considered.

6.2 Performance Generation by Generation

Results obtained generation by generation in Figures 3-6 show that the novel approach
performs increasingly better than the traditional approach as ρ grows. While the best-
fitness convergence pattern for the novel approach remains almost the same for differ-
ent ρ values, this pattern for the traditional approach experiences significant changes
with ρ; the greater the domain size of the considered BN is (see Table 1), the more signif-
icant the changes are. BN domain size also has an influence on the lowest ρ value that
permits non-trivial differences between the two approaches to be observed: ρ = 0.2 for
Alarm networks, ρ = 0.2 for Welch networks, ρ = 0.3 for Rojas networks, and ρ = 0.3
for Gelsema networks. In some of the graphs in Figures 3-6, namely Rojas 0.7-0.8,
Welch 0.5-0.8, and Alarm 0.3-0.8, while the novel approach consistently converges to a
good feasible solution by generation 100, the traditional approach can only supply ex-
planations whose fitness is near zero even after 1000 generations. In this latter case, the
traditional approach is conducting most of its search process in a zero-fitness plateau
which, however, is efficiently avoided by the novel approach. Consequently, for BNs
with large domain sizes —the ones for which an approximate inference method makes
sense— the novel approach provides important inferential advantages, even for low ρ
values such as 0.2 or 0.3.

The graphs for P (z(t) > 0) in Figures 7-10 demonstrate the same global result as
obtained for best fitness in Figures 3-6: The traditional approach is highly sensitive to ρ
values, unlike the novel approach, which exhibits a more robust behavior. As ρ grows,
the convergence time of P (z(t) > 0) under the traditional approach increases signifi-
cantly to the point that, for high ρ values (Rojas 0.6-0.8, Welch 0.4-0.8, and Alarm 0.3-
0.8), only solutions violating one or more constraints exist in the population throughout
the 1000 generations considered. It is interesting to observe the asymptotic behavior of
P (z(t) > 0): As ρ increases, P (z(t) > 0) approaches one for high t values; this is due to
the fact that, in such circumstances, CPTs contain an increasing number of zeros and,
as a consequence, it becomes highly probable that crossover and mutation generate
individuals violating at least one constraint.

The experimental results obtained for P (z(t) > 0) support the validity of Theorem
2. By considering t = 1 (initial population), Table 7 shows P (z(1) > 0) experimental
results for the four type of networks under the traditional and the novel approaches.
These values can be compared in Table 7 with the theoretical values given by Theorem
2. In general, the experimental results present a similar pattern to that of the theoretical
values.

As discussed in Section 4.2, random walk represents a clear disadvantage for the
traditional approach compared to the novel approach. The mean generation at which
random walk ends under the traditional approach was measured over a set of runs for
the experiments reported in Section 5.2. Table 8 contains these mean generation values
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P (z(1) > 0)
Experimental Theoretical

Network Traditional Novel Both Approaches
Gelsema-0.1 0.588 0.581 0.537
Gelsema-0.2 0.632 0.618 0.794
Gelsema-0.3 0.97 0.975 0.913
Gelsema-0.4 0.991 0.99 0.965
Gelsema-0.5 0.989 0.991 0.987
Gelsema-0.6 0.999 1 0.995
Gelsema-0.7 0.998 0.999 0.998
Gelsema-0.8 0.999 0.999 0.999

Rojas-0.1 0.904 0.906 0.681
Rojas-0.2 0.729 0.738 0.905
Rojas-0.3 0.956 0.957 0.974
Rojas-0.4 0.999 0.999 0.993
Rojas-0.5 0.998 0.998 0.998
Rojas-0.6 0.999 0.999 1
Rojas-0.7 1 1 1
Rojas-0.8 1 1 1
Welch-0.1 0.531 0.534 0.806
Welch-0.2 0.987 0.985 0.966
Welch-0.3 0.99 0.991 0.994
Welch-0.4 1 1 0.999
Welch-0.5 1 1 1
Welch-0.6 1 1 1
Welch-0.7 1 1 1
Welch-0.8 1 1 1
Alarm-0.1 0.973 0.973 0.916
Alarm-0.2 0.998 0.998 0.994
Alarm-0.3 1 1 1
Alarm-0.4 1 1 1
Alarm-0.5 1 1 1
Alarm-0.6 1 1 1
Alarm-0.7 1 1 1
Alarm-0.8 1 1 1

Table 7: Experimental and theoretical values for P (z(1) > 0).

for the subset of networks in which each of the 100 runs led to random-walk end by
generation 1000. The table also includes theoretical values calculated from Theorem 3.
Even if experimental and theoretical values are comparable, the correspondence is not
exact for two main reasons. Firstly, there is a high variability regarding random-walk
end among different runs. Secondly, random walk was approximated as the random
generation of a population generation by generation, not taking into account the effects
of parent selection, crossover, and mutation.

The number of variables is not a reliable indicator of hardness of a BN. If the BN
is sparse, for example if it has a tree structure, then a structure-based algorithm can
solve it in milliseconds. On the other hand, if the BN is not sparse, then the BN is
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Mean generation at which random walk ends
Network Experimental values Theoretical values

Gelsema-0.1 1.01 1
Gelsema-0.2 1.01 1.11
Gelsema-0.3 7.43 1.67
Gelsema-0.4 20.65 3.32
Gelsema-0.5 29.67 7.94
Gelsema-0.6 123.17 21.51
Gelsema-0.7 122.17 64.47

Rojas-0.1 1 1
Rojas-0.2 1 1
Rojas-0.3 1.02 1.06
Rojas-0.4 10.97 1.9
Rojas-0.5 9.88 6.19
Rojas-0.6 36.18 27.59
Welch-0.1 1 1
Welch-0.2 1.3 1
Welch-0.3 1.38 1.77
Welch-0.4 45.63 8.92
Alarm-0.1 1 1
Alarm-0.2 1.3 1
Alarm-0.3 27.34 2.72

Table 8: Experimental and theoretical values for the mean generation at which random
walk ends under the traditional approach. The following population sizes were used:
m = 10 for Gelsema networks, m = 100 for Rojas networks, m = 150 for Welch
networks, and m = 1000 for Alarm networks.

often beyond the scope of present-day algorithms and hardware. It is this latter second
type of BNs we are ultimately interested in solving; this article enables scalability to
larger BN. We believe that further improvements in scalability would require the use
of additional and quite different techniques such as niching (Mengshoel and Goldberg,
1999; Mengshoel and Wilkins, 1998), stochastic local search (Hoos and Stützle, 2005),
initialization (Mengshoel et al., 2007), or related methods, all beyond the scope of this
paper.

7 Conclusion

This work develops and analyzes an approach to BN constraint handling in evolution-
ary algorithms that use tournament selection. The abductive inference approach is hy-
brid in that it combines feasibility considerations with the use of a penalty function. If
both explanations (individuals) are infeasible, the individual with the smallest penalty
function value, which measures the number of violated BN constraints, is the winner.
In all other cases, the explanation with the greatest probability is the winner.

Approximate abductive inference in BNs through evolutionary mehods has tradi-
tionally been based on assigning each candidate explanation a fitness equal to its joint
probability, calculated from Equation 1. The present work demonstrates a limitation
of the traditional approach as the number of zeros in CPTs grows. Frequently, this ap-
proach becomes almost useless because of the difficulty of finding explanations with
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joint probability greater than zero, giving rise to a random walk that dramatically de-
lays convergence to an optimal or approximately optimal solution.

To address this problem, this work has presented a novel tournament selection ap-
proach to approximate abductive inference in BNs. The underlying idea of the novel
approach is the redefinition of the fitness function by taking into account, for each ex-
planation, the number of family configurations leading to a conditional probability
equal to zero. (A family configuration is an assignment of values to a node and its
parents in the network.) In this way, the novel approach allows approximate abductive
inference to be tackled as a contraint optimization problem, since a family configura-
tion leading to a conditional probability equal to zero is said to originate a constraint
violation. If all explanations in a tournament have zero probability, i.e., they are all
infeasible, the explanation that violates fewer constraints wins the tournament.

The novel approach has the advantage that random walks are avoided in the
search process. Besides, even in the case that no random walk would take place un-
der the traditional approach, the novel approach might perform a more efficient search
due to its ability to get rid of explanations violating constraints. This is an important ca-
pability for BNs with a number of zeros in their CPTs, since in such cases crossover and
mutation generate individuals violating one or more constraints with high probability.
Finally, when no zeros are present in the BN CPTs, both approaches are equivalent, i.e.,
just the joint conditional probability is relevant for the fitness function definition under
both approaches.

The present work opens several research directions for the future. A blind muta-
tion was here used such that any non-evidential gene could be mutated; it is possible
that better performance could be obtained if just non-evidential genes giving rise to a
constraint violation are mutated, i.e., the novel approach could benefit from the intro-
duction of an intelligent mutation. Further advantages could perhaps be obtained from
applying diversity maintenance techniques like niching (Mengshoel and Wilkins, 1998)
or population initialization methods based on stochastic simulation algorithms for BNs
(Cheng and Druzdzel, 2000). Adopting a more general point of view, this work has an
impact on any search method that could be applied to approximate abductive inference
in BNs; techniques like simulated annealing or ant colony optimization (Guo et al., 2004),
among others, could greatly benefit from adopting the underlying idea of this work.
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